Posts

Where we are now…and where we’re going.

As 2012 winds down and we get ready to head to Las Vegas for the Autodesk University conference, I look back at the strides that have been made in the 3D world and all of the associated hardware and software in our industry.

Not only is there new technology being used and accepted, but the demand for more BIM products, users, and technologists has grown faster than ever. I have also watched with great interest the wave of corporate acceptance that was not there even three years ago.

There is still much ground to be broken, but wow – what a year!

New Software

Take software, for example. As I travel around America and talk to user groups and clients, the one thing I am always asked is when will it be easier to model point clouds into usable entities?

There is much research going on to solve this challenge. Though I have no commercial interest in this firm, I believe one of the ones to watch in this space is ClearEdge 3D. Their EdgeWise Plant software is pushing the barriers away for modeling point clouds.

Personally, I believe that within the next three years, this major barrier we face now will be a minor issue and point cloud use will continue to grow and expand.

The other great leap in technology is that most of the major software packages have updated their products to accept point clouds as a layer. This means that most of our clients in the architectural and MEP worlds can now import our point clouds into their design software and greatly enhance their designs.

Just three or four years ago, using point cloud data required modeling and this limited the market to mechanical and structural engineers and various contractors with specialty software.

Today, because all Revit users can import point cloud data, the need to model everything in a scan project has been greatly decreased. This is a big deal! Now, instead of having to pay for an expensive model, end users get all of the benefits of point cloud precision without the associated costs of modeling.

Not to be overlooked, there are still issues that will need to be ironed out in inserting point clouds into design software, but they will be overcome with time.

For example, if you are working in Inventor to model plant process data, it is best if the project is modeled from start to finish in Inventor. Similarly, if it is to be modeled in Revit, it is best that it be modeled from start to finish in Revit. There are no readily available universal translators to move from a model that was created in Cyclone to a model in Revit while keeping the full integrity of the original model.

Though the data itself is globally transferrable, the structure of the models, entities, families and libraries requires more work to be done in this area.

New Hardware

Last year, I predicted that the hardware in our industry was set and that most of the changes would come in the form of software. On this point, I was wrong.

Several changes have occurred that continue to advance the hardware. For example, The Faro Focus 3D has broken the price barrier. Prior to its release, most scanners started around $80,000 and went up to $200,000. The Focus was released at about $50,000 and has caused price adjustments throughout the industry.

I believe this trend will continue and prices will continue to go down. This is both a good and bad thing for the industry. As prices go down, more people with marginal training and experience will begin to use scanners and bad point clouds will become more of a problem.

There is a saying in our industry that “one bad point cloud kills a lot of clients.” Indeed, this is true. I have talked to clients who tried laser scanning nine years ago, had a bad experience, and will not use it again to this day. The problem is not that scanners are getting more affordable, but that there are still no national standards in the industry.

The upside is that with a lower cost competitor, vendors must consider what value their laser scanners bring that others do not.

Cool New Technology

Two things I am really interested in and know will change the playing field moving forward are   aerial drones and augmented reality.

These two technologies are growing fast and have many great uses. A traditional helicopter used to map utilities and large areas generally costs about $25,000 per day. A one-meter drone quadripod, on the other hand, costs about $2,000 per day.

Though there are unique tasks that the smaller one-meter drones can do that the helicopter is currently doing, there are other tasks that the smaller drones can perform that traditional helicopters cannot do. For example, smaller drones can more effectively and safely map underground pipes, mines and tunnels.

Currently, to send two scanner technicians into a tunnel requires about six surface and sub-surface support staff. An unmanned drone with avoidance technology would be a great solution.

Augmented reality and the ability to project 3D images easily and to large groups is available and is changing the whole world of education. A small but growing company, ViziTech USA, is doing very creative and trendsetting work in this area.

This is where the science of 3D technology is repackaged so that the average person can use and understand it. This is a powerful tool and will lead to great changes in many industries and educational processes. For more on augmented reality, read our recent blog post here.

The design and construction of future projects will still require the same basic processes that are required today. But the use of precision data before, during and after construction – and the visual way the data can be viewed – will greatly reduce errors and downtime events.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

 

3D laser scanning revolutionizes construction site accident investigation and evidence collection

In early October 2012, several construction workers were killed or injured when the Miami Dade College parking garage collapsed like a pancake, trapping a then-unknown number of workers inside (See http://tinyurl.com/9956xae). Some survived, but some did not.

Post-accident site investigation

Since this tragic loss of life, injury, and property damage, lawyers have no doubt already begun what will be expensive and lengthy litigation. The owner, architect, engineer, contractor, subcontractors, construction workers and their families will all play a part.

The evidence may be sifted and sorted for years before any judges or juries hear about what happened on that fateful day.

Ideally, each party would have ample opportunity to investigate the site, take measurements, and form opinions as to what happened. However, this was not an option in Miami.

Workers needed to be freed. The structure’s potential for further collapse endangered all those around it. The owner had a dangerous pile of rubble where a new parking garage was supposed to stand. Certainly, nobody wanted to preserve site conditions for any length of time.

So, how can evidence of existing site conditions be preserved forever? 3D laser scanners were dispatched to the site immediately.

From onsite scan to a 3D model on your computer

Similar to traditional surveying, 3D laser scanners are set-up on tripods and use light to precisely measure their surroundings. But whereas traditional land surveying instruments take only one measurement at a time and need a reflector to return the light, 3D laser scanners take millions of measurements of everything that they can “see”  within 300 feet.

This data is collected in a matter of minutes and the instrument can be set up as many times as necessary to see the entire site. Technicians then convert this raw information into a 3D model.

Lawyers and their experts can use this model to return to the day of the accident at any time.  They can pan and zoom around the model to find any desired vantage point. Any angle or distance can be measured and re-measured.

Collecting quality evidence

After any given construction accident, investigators take photographs, make measurements and sketches, and interview witnesses.  However, even the most seasoned investigator can miss critical details due to time constraints, site access, or simple knowledge of the facts.

Once the site is cleaned up or altered in any way, the evidence is spoiled. However, 3D laser scanning allows investigators to return to the site at any time to retrieve missed or forgotten details.

Additionally, the evidentiary quality of 3D laser scanning data far outweighs traditionally collected evidence. Photographs provide only a single 2D perspective and each detail must be specifically targeted. Manual measurements are subject to observational and recording error.  Witnesses certainly cannot permanently remember every visible detail, especially in the wake of a tragedy. 3D laser scanning overcomes all of these limitations.

Full access to the site is often limited, for example, from the danger of additional collapse and loose rubble around the parking garage in Miami. This problem is also overcome with 3D laser scanning, as it uses light to measure from a distance. Anything that can be seen can be scanned and recorded for later review.

Using the model at trial

3D laser scans are not new to the courtroom and readily pass muster under evidentiary challenges. Foundation for entering a 3D laser scan on the record can be laid by a professional land surveyor, but courts nationally have allowed scans based on the testimony of laymen who were simply certified to use the equipment.

At trial, 3D laser scans provide unparalleled demonstrative exhibits. Judges and juries will no longer need to travel to visit a site.

As noted by Lt. Warren Hamlin of the Knox County Tennessee Police Department, “It’s almost like taking the jury right to the crime scene. We can show pictures all day long, but when you’ve got a panoramic view that shows exactly how it looked and where everything was, that’s a much better depiction than a photograph. … So, if a guy says, ‘I was standing in that corner,’ you could create a viewpoint exactly where his head would be and look around the model and tell whether, yes, he could see that, or, no, he’s lying.”

###

David Headrick has over 14 years of experience in the surveying, engineering and legal industries, both as a project manager for LandAir Surveying and as a lawyer in private practice. He has represented numerous land surveyors, designers, architects, contractors and other industry professionals throughout his career. Today, David serves as an executive and project manager for LandAir, focused on developing and managing the company’s 3D laser scanning department. Contact him at dheadrick@lasurveying.com.

The Next 3D Scanning Frontier: Transportation BIM and Augmented Reality

As I stand back and look at where 3D laser scanning has led us as a company, I am both pleased and confident that the world of 3D virtual design and engineering is healthy and growing fast.

I recently met some truly amazing people from all over America and Europe who are doing some very forward thinking things with 3D virtual reality in both transportation BIM systems and augmented reality. Here’s a snapshot of what I saw:

Transportation BIM Systems

I was in Washington, DC, a few weeks ago speaking at a large corporate meeting and had the opportunity to see a fascinating presentation on the San Francisco Bay Bridge construction.

The construction cost will come in around $7 billion (yes, billion). The metrics are staggering, but there are four major construction firms working on the project.

Cal Trans has scanner crews scanning the progress on a weekly basis. Because of this, there was room in the budget and the available technology to do real time clash detection of the existing and proposed construction.

Because the bridge was designed in 3D (really in 5D), engineers were able to save big bucks on relatively simple components. For example, the 3D scan allowed them to get real time views from the proposed security cameras underneath the bridge. As a result, the actual number of cameras was cut in half, saving several million dollars.

Crews also used 4D (time) clash detection to view when a new component of the bridge was being constructed while an existing component was still in place. The 4D BIM model, when clashed against the existing model at that moment in the construction sequence, showed that there were interferences in temporary construction items.

Though the clashes would not have interfered with the final design, they did interfere with the interim design and would have slowed construction. This knowledge allowed the designers and contractors to make modifications to the sequences before there was an actual problem.

Just a few years ago, this capability would have been unheard of!

One of the more astonishing things I saw was a 5D construction sequence video that showed the bridge’s proposed construction slide bar and dollars spent on overtime as the bridge was coming out of the ground or water. This enabled you to compare construction costs to the bridge’s progress. At this same time, the 3D graphic was color-coded to show the four separate contractors and their workflows.

This all sounds complicated – and it was – but through the 3D engineering process, you could view the time estimates, add the construction dollars, and come to a very natural conclusion as to what was actually taking place. You could confirm that one contractor had finished his new section before another section was tied into it.

A 3D video showing a major component – like how the cabling system would be threaded through the bridge to provide the final structural support – was also very intriguing to watch.

Augmented Reality

This may be one of the biggest and best changes that I foresee coming to the construction industry.

Augmented Reality (AR) is a live view of a real-world environment whose elements are augmented by computer generated sound, video, graphics or GPS data. If you consider that most new construction will first be built by engineers and designers in 3D in computers, then you may see where we are going with this.

With the base designed in 3D, you can then place a “target” in a construction zone. A target for augmented reality can really be anything as long as a tablet or cell phone can recognized it as graphic signal to launch 3D BIM programs.

These targets are used to orient the tablet to the exact same design point as where the construction is occurring on the ground. When targets are scanned with a tablet, the original design for that exact spot of construction is displayed. As the tablet is moved around this area, you can view the construction in 3D at a specific location.

Here’s an excellent example: Assume that you have a three-sided, multi-story concrete opening for a proposed staircase. By scanning the target placed in that area, construction workers can see on their iPad or Android tablet exactly what the finished product will look like. Not just a flat drawing on 600 sheets of blue lines, but the 3D model of how it will actually fit into the opening.

And remember: the world is international and these projects are under construction all over the world. By doing this, we just transcended the language barrier. We just solved the problem of expert tradesmen who are great at their craft but may not read details on blueprints that well. We just got a crew of 2-5 construction workers from a point of unknown to a point where everyone has a perfect mental picture of what is going to be constructed. That’s a huge step!

One of the oldest sayings for any worthwhile project is, “Begin with the end in mind.” What a great way of accomplishing this.

As a testimony to how well this is working, many construction companies have been rolling out flat screen computers onsite to show superintendents actual BIM models by sequence. All throughout the day, they are used over and over by the workers who are building bridges, buildings, and infrastructure around the world.

These rolling 3D models are helping to get projects constructed right the first time. They are preventing construction problems and saving big money. Very soon, I believe that all of this will be done with either special glasses or projection screens.

Currently, the only obstacle slowing the process is having a way to orient a 3D BIM model real time inside of a building. Outside, it can be done with GPS. But inside, it is more challenging.

However, augmented reality will very quickly make paper plans obsolete. I have seen it in too many places and have seen the benefits. It is coming and will soon be a standard. All of the major construction companies are embracing this technology.

Another real use of augmented reality will be in the operations of the finished building. The technology already exists to allow a maintenance worker to go up to a motor or valve (or any piece of equipment that has a target) and scan it with his tablet or phone.

This opens up a computer database so that he can see the last maintenance schedule and the internal parts of the machine. If he services the machine, his data is automatically sent to the company database and is available for anyone to review. Or, if a repair is needed, he can launch a video of how to take apart the machine and replace any part he needs.

This brings the power of the “owner’s manual” and the entire knowledge stored in the computers running the facility in real time 3D to the exact point it is needed. Imagine the implications if you own a complex manufacturing facility.

In just the past seven years, I have seen strides that were only imagined 10 years ago. But today, it’s all happening – and there are very creative people all over the country working on even more and more innovations. It’s an exciting industry to be working in!

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

An armed robbery, a high speed police chase and…laser scanning?

Sometimes I don’t have to look past the front page of the local newspaper to see a good example of laser scanning in action.

Tragically, there was a police-involved shooting in Cobb County, Georgia, this past weekend, as reported by the Atlanta Journal-Constitution. The suspect allegedly robbed a gas station and then led the police on a high speed chase. The chase ended on I-75 when the suspect pointed a weapon at the police officers and was shot dead.

This was a very unfortunate incident, but the impact on the community was far lessened due to the outstanding work of the Georgia Bureau of Investigation.

The shooting and subsequent chase left many cars wrecked and damaged and, ultimately, the interstate was forced to close temporarily. As you can imagine, this was not a calm situation.

The GBI dispatched their laser scanning team to the site to set-up and scan the area to document the evidence both known and unknown at the time. They also generated 3D photography to further document the area in its entirety.

Using this method, they not only saved time, but were also able to quickly collect the data that would be necessary if the case were to go to trial.

So why use laser scanning to document a scene like this?

First, consider the sheer size of the scene. In this case, the area of study was larger than a football field. Without scanning, investigators would have had to take multiple photographs and make measurements with total stations that shoot one point at a time or worse, measure with 100 foot-long measuring tapes.

This takes much more time, requires more people, and creates much more chance for errors. The errors could be wrong measurements or even missed objects.

When you combine the laser point cloud data with the photographic data, the measurements and the scene become much more intuitive and obvious. You can place the evidence markers by the evidence within the scene and the scanner automatically picks them up.

Instead of making and recording many different angles and distances, you simple put in the points per square foot you want to capture into the scanner and in about 15 minutes, you have a completed scan with photography.

You can look at the scan and very clearly see the markers and measure from any object in the scan to any other object in the scan. So, if you need to know how long a skid mark is, for example, you would just click two points – one at the beginning and one at the end – and the measurement would be instantly generated.

With laser scanning, time at the scene is used to locate and mark the evidence and important points in the scene. All critical measurements can be made offsite after the scene is moved and the traffic is moving again.

Here’s the most important part: If you need information about the scene, but did not know it at the time of the scan, all is not lost! If it exists in the scan, you can make all the measurements you need to document the new (previously unknown) evidence.

More and more, laser scanners are being used to document crime scenes across the country. District attorneys like the scanned data because they can easily view it.

Scanned data is totally objective in that it collects the whole scene. It is easy to put a point down on the ground every square inch so that the coverage of the site is complete. Additionally, the fact that no one has to decide what measurements are made in the field before they release traffic is very important.

Judges like the data because the jury does not have to visit the site to understand the scene. Instead, they can simply view it in 3D on a computer screen without leaving the courtroom.

Laser scanning also saves time and money. Traffic still has to be stopped for an investigation, but if not for laser scanners, it would be stopped longer and there would be less information collected.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

The Future of Laser Scanning: 5 predictions for design and construction

In a few weeks, I am speaking at a conference about the future of laser scanning in the design and construction world.

The audience will be members of a top international construction firm that is very progressive in its use of BIM and 3D laser scanning, so it got me thinking about some of the research I have done and observations I’ve made at various 3D laser conferences over the last eight years.

Based on the incredible innovations in our field in the last decade, I have five predictions as to how high definition scanning will change design and construction in the near future:

#1: Rapid and creative increase in the use of the technology. 

When GPS hit the market in 1992, we were early adopters of the technology and found great savings for our workflows as a result. For one, what used to take us two to three weeks of field surveying could now be done in just hours.

While there is still pushback in some sectors of the design industry related to laser scanning, contractors are largely on board. No other single group gets a better return on investment for the dollars spent on laser scanning.

Every major building contractor I know is using the technology in some way. The reason is simple. If something is designed from old plans and doesn’t fit, it is the contractors who will have to pay to make it fit. They live in the world of construction schedules and why is not nearly as important and when and how much!

The use of this technology will only increase in the future. Currently, 3D laser scanning technology is being used to show floor flatness with 3D contours well before the new floor is built. As a result, if there are any critical departures from the plans, they can be fixed for a fraction of the cost of what it would be once the walls are already in place.

BIM models are being compared to the laser scan in real-time so minor changes can be made before they turn into a major – and expensive – problem.

As we go forward, I see a time that scanners will be attached to each floor of a building as it goes up and will robotically scan at appropriate times, allowing the laser point cloud to be compared and clashed every night or even hourly to the BIM model to detect changes between the design and construction.

This technology has already reduced the cost of construction and will go upstream to reduce the cost of project insurance because it lowers risk.

#2: Video vs. Laser Scanning?

Ironically, one of the innovations of 3D laser scanning will be using the laser less and the iPhone more.

For many years, “close” range photography has been able to create accurate as built information. Used by experts who understand the survey control necessary and the techniques required, the results could be better than laser data.

Now there are firms writing software that can produce point clouds using video or multiple pictures of the same object (which is what video really is). With no control, it does not have the same accuracy as lasers, but the cost is significantly less.

There is a debate in the 3D world whether this will replace laser scanning or compliment it. I suspect the latter.

One study I read said that creating point clouds from photography currently was about 98% as accurate as a laser scan on smaller areas. That said, if you measured a room that was 100-feet long with a point cloud based on photography, it could theoretically give you a resulting measurement of only 98-feet long.

Consider this: How many times is 2% good enough? The truth is, many times it is. One of the oldest problems in scanning is how to get above the ceiling tiles to document the utilities above.

Getting a scanner up there is slow and expensive. Removing the tiles is slow, dirty and expensive. But if you could remove a few tiles and snap a few pictures, you could get an accurate inventory of what was there and where it was going that would be extremely helpful.

Much research is being done in this field, but I think in a very few years – depending on the specifications – we will be using cameras as often as lasers.

#3: Intelligent point clouds

This is where much of the research in software is going.

Right now, there are some programs that can model pipe correctly between 70% and 90% of the time. They can also recognize walls and show some, but not all, of the flat surfaces.

While this is a huge step forward, if only 80% are right then you have to check 100% to see which are wrong. You would not want to order a couple of hundred feet of the wrong size pipe and have in onsite only to find that it was the wrong diameter.

In the design world, it has always been our opinion that no data is much better than bad data.  Ironically, the current software does have excellent object libraries, so you can isolate the point cloud of a structural I-beam and ask the software to find the right part and it does a great job. However, though it is a more reliable process, it is a manual process.

I believe this problem will be completely solved in less than two years and the use of point clouds will increase exponentially.

#4: Why create a model at all?

At the risk of creating total confusion, there is a growing group of expert users that ask this very question, why model at all? Their thinking is that when you model, you change the shape of the object scanned and the cleaned point cloud is a better representation of an object.

That being said, with the ability to bring the point cloud into design programs, more professions – especially the high precision users – are designing inside the point cloud and not from a model.

I saw a fascinating presentation by a satellite designer. When another payload was added to the satellite, he would not work off the plans, but instead scan the existing satellite in the next room and use that point cloud for the additional design. Of course, we don’t all have the luxury of having a working copy of the design next door.

The important point here is that for critical design, the point cloud is closer to reality than the model. The other realization is that nothing is ever built exactly as it was designed.

#5: Advanced data capture platforms

This will be one of the biggest changes and most fun to watch.

Currently, we use helicopters, fixed-wing aircraft, automobiles, trucks, off road vehicles, boats, and tripod-based systems to collect data. Though these work well for most uses, many of the projects that need scanning are in dangerous conditions. (Tunnels, large underground pipes, underground mines, failed construction areas, high voltage transformer stations and nuclear power plants.)

All of these areas have one thing in common: they are unsafe.

Enter drones and walking robots. When the nuclear power plant in Fukushima, Japan, failed and melted down, the level of radiation was so high that the workers could spend very little time inside the radiation zone.

The team brought in a small drone that delivered high quality close range aerial photography and was equipped with avoidance technology so it would not fly into a fixed object. The digital information was extremely valuable in assessing the damage and did so safely with little human risk.

I have already seen experimental drones equipped with small scanners that are programmed to scan flat surfaces and recognize open areas like doors. They will go through to continue the scanning in areas that, because of gas or other dangers, would be very difficult for humans to work in. In studying the decaying infrastructure of America for rehabilitation, can you imagine being able to put a drone down the sewer systems of New York City or Atlanta and get high resolution scan data without having to put people in such an environment?

Track mounted robots are being used in the same way. These will definitely be used more and more in the future and will change the way we work.

The future of scanning is immense and the different ways we scan – the data capture vehicles and the software – will continue to evolve and become more customized to the specific industry problems presented. Point cloud data, whether collected with lasers or iPhones, is still the best data that exists for capturing and studying existing conditions.

The future will be exciting to watch and the prize goes to the person or company that can best see beneath dense foliage, behind walls, or under the ground.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

3D Forensic Scans: Three civil applications

In my travels along the 3D laser scanning superhighway, I’ve spent a lot of time talking to criminal forensic experts. This group was one of the earliest adopters of laser scanning technology and I’ve had the pleasure of meeting agents with the FBI, the Secret Service, and even generals and admirals who are familiar with its capabilities.

In my experience, the most advanced groups in the specific application of the technology to prevent and investigate crimes have been the Secret Service and Scotland Yard. Both have programs written specifically to analyze the data and use it proactively to protect kings, queens and presidents.

High definition scanning allows you to check every site line – not just one or two.

Our firm has worked on several “criminal” projects over the years – some supporting the prosecutors and their evidence and others supporting the defense teams and their clients. But we also work with the litigation and documentation of forensic evidence for civil or construction projects.

Many jobs require our expertise to go out and document the existing conditions of a site. We have literally traveled from Montana to Texas to Georgia working with clients on various cases.

Perhaps the most famous civil forensics projects were the scans used for analysis of the World Trade Center attacks and the Minneapolis bridge collapse. On both of these projects, the scan data after the destruction of the structures was used to determine exactly what caused the failure.

Obviously, in the World Trade Center, the initial impact of the plane created the fire ball and damage, but it was the fuel in the plane that heated up the beams in the structures and ultimately caused them to fail, each floor collapsing on the one below as the entire structure came down. The melted beams were documented with laser data.

Structural Integrity

One of our first projects was scanning a three story parking deck. During the initial walk around, we could tell that the deck – even though made of concrete – was warped and some of the columns were out of plumb. Other areas were cracked and stressed.

We produced plans and models with the data and structural engineers were able to determine that the structure was unsafe. Because of the density of the data sets, engineers were able to look at all surfaces rather than a few strategic spot shots before making their final determination.

By being able to look at the line of the vertical columns through the building, engineers could tell that the cost to fix the failing structure would be much larger than building new.

Large Vessel Analysis

We also had another project where we were asked to scan a large containment vessel that held various types of liquid depending on the product being produced or stored.

In this type of investigation, we were able to document that a certain vessel was out of plumb, warped or bent. This information was then used to determine if the vessel was safe and, if not, how and when to replace it before a failure occurred.

Settlement Monitoring

Being able to monitor when and how much something is settling is very important to a property owner. We recently worked on a very large project in the western United States that involved a large platform used for loading and unloading products.

In this case, one long section had settled much more that the specifications allowed and had begun leaning at a dangerous angle. The engineer showed me previous surveys and I asked him why they needed us if they already had survey data on the structure.

He explained how the parties involved were having difficulty understanding the traditional survey data and its implications.

Once we scanned the platform in 3D and modeled it, it was quite obvious to everyone how badly the shape of the original structure had changed, as well as the principal cause of the failure. This helped move the group discussion from, “There isn’t a problem,” to “How do we get this fixed?”

We have completed many other civil forensic projects for engineers ranging from dam failures to vertical wall failures and even construction slabs that were not level or flat. The common element in all of these projects was that the use of laser scanning technology was the perfect tool to document the conditions and the data was easy to interpret and model into a visual form that everyone could understand.

Forensic scanning of crime scenes will continue to grow, as will the 3D laser scanning of complicated civil projects. 3D laser survey data is becoming mainstream in analyzing the cause of catastrophic civil construction failures. If you know how something fell to the ground, you can usually tell what failed first.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

3D Laser Scanning: The New Industry Standard

When we first started laser scanning back in 2005, we replaced some of our total station surveying equipment with scanning technology. As much as anything, this was a great way for us to learn how to use the technology and understand its capabilities and limitations.

Early on, much of the work we did involved transportation projects and large complicated intersection surveys. There were many immediate benefits. For one, our surveyors were no longer put out into traffic and in harm’s way.

Another benefit was that we didn’t have to drive across town or across the state just to check on a few ambiguous points in a survey. Instead, we could just go back and look at the point cloud.

Today, in 2012, the entire world of architectural and engineering design and construction has changed. While before we had to convince clients of the benefits of using laser surveys, we now have a growing client base that simply will not consider starting a project without one.

In addition to providing accurate spatial information to civil engineers, plant designers, architects, contractors – and even insurance companies and crime scene investigators – laser scanning saves both time and money.

The truth is that in very complicated environments – like a mechanical heating and air conditioning plant room or a baggage room in an airport – the cost of scanning is nominal when compared to the total cost of the project.

Here are four primary reasons 3D laser surveys, or high-definition scanning, is quickly becoming the new industry standard when it comes to making precise measurements in complicated environments:

Reason #1: Scanner Speed

The speed of scanning has changed dramatically compared to what it was just seven years ago.

The first scanner we purchased (and still use today) took one hour for a 360-degree spherical orbit. Today, with our current scanners, it takes just six minutes.  This speed enables us to take many more scan set-ups than we used to take.

With our phase-based high speed scanner, we can now get 40 to 60 scans per day, which is very adequate to cover a large two-story mechanical room. To get the same amount of scans seven years ago would have taken a week.

In areas like these, it is the detail we look for, not the range. In extremely complicated areas, we make a set of scans on all sides. This data is invaluable to designers because it allows them to avoid interferences that often occur in these types of areas.

Reason #2: Software Improvements

Improved software programming has also contributed to the widespread acceptance of scanning technology.

I remember talking to clients back in 2005 and our message was something like this, “We will scan for you, then give you a 2D deliverable set of drawings that you can use to design your project.” When they would ask if they could use the point cloud in their design, our answer was always the same: “Yes, but you will have to buy $10,000 worth of software.”

As you can probably imagine, this was not an easy sell.

Fortunately, today Bentley, AutoCAD and Revit all have point cloud engines in them. The difference between an engine and a viewer is that we can now load a point cloud into an “engine” for a client and they can use the data in the design without having to purchase expensive “point cloud” software.

In fact, one of the takeaways from a scanning conference I recently attended was that all of the major software providers are moving to full 3D software design systems. They finally understand what we have known for years. Why would you survey in 3D, flatten the data to 2D, design in 2D then build in 3D? It just doesn’t make sense.

Reason #3: Clash Detection

This alone is worth the cost of a 3D laser survey.

Consider that if a project is modeled in the design phase, the completed final design – including the MEP systems, air handling systems, structural system and all of the architectural design – can be placed within the point cloud and clash detected. Anything that interferes with another system can be seen immediately and corrected before construction.

This is huge! What prudent engineer, designer or contractor would not want this advantage?  How important would this be to an owner?

Reason #4: TrueView or 360-Degree Spherical Photography

This technology has also improved quite a bit in the last seven years. When we first started scanning, we were fascinated with the fact that scanners could take photographs of the surrounding area, and then take that photographic data and overlay it with the scan data to make general measurements to the environment.

Unfortunately, back then the on-board camera was not as good as we had hoped and sometimes the pictures would come out octagonal and disjointed. As the process became more refined, we were able to mount a high resolution camera on the scanner and produce a crystal clear, color spherical photograph of the site.

This is a big step because it allows you to view a site from any scan set up. You can add text and information to the photographs and then e-mail a specific view to a client across the country or across the world. (In this case, some of our clients pay for our scanning fees with their savings in plane tickets!) This tool also enables clients to look out from the center of every scan and saves lots of time and discussion as to what is or is not located in the area of interest.

High definition scanning has quickly evolved from an emerging technology to an industry best practice when it comes to complicated projects. The construction process always includes many unknowns and the chance of design and construction errors is always high.

Why put yourself in the position of having to explain how a construction project was slowed down or over-budget because a laser scan was not the foundation of the project?

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com,  tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.

3D Laser Scanning and the Trayvon Martin-George Zimmerman Case

We have all heard and seen the news reports of the terrible tragedy that occurred in the altercation and subsequent killing of Trayvon Martin by George Zimmerman.

The case will be prosecuted on the facts of whether Zimmerman was acting in self-defense or whether he was stalking Martin and therefore the aggressor and his fate will likely be decided by a jury.

Watching the extensive coverage of this case, I noticed a laser scanner on the scene in some of the many news reports. I don’t know exactly how the data collected will be used, but I do know many ways that it could be used.

Police departments all across America are purchasing high definition laser scanners to use in their crime scenes investigations. Prior to laser scanning, a series of photographs would have been taken and lots of notes and measurements recorded as a way to document what happened.

Until recently, that was the best way to thoroughly document a crime scene.

But as soon as a scene is released, it is contaminated, making it unlikely that more useable evidence will be found. 3D laser scanning has changed all of that.

First used on crime scenes by the FBI, Secret Service and Scotland Yard, laser scanning is now becoming a “best practice” for the documentation of a homicide. There are many reasons for this, but here are just a few:

  1. The 3D element: Scanning a scene in 3D enables all of the evidence in the scene – from the buildings, sidewalks, parked cars, and surrounding areas – to be preserved in three dimensions. This means that you can look at the scene from every possible view, not just the view of the photographer and camera angle.
  1. Data capture: As cases progress, there will be evidence that comes up later that was not looked for originally. If you have done a thorough job of scanning, objects like drink cups, candy wrappers, or even potential weapons that were unknown at the time can be seen in the scan. This has proven to be an excellent tool for the prosecution in criminal trials. Many cases have been helped by data captured in a scan that was totally unknown at the time of the initial investigation.

So how can this technology be used in the Trayvon Martin/George Zimmerman case?

If you remember the scene where the killing occurred, it was on a sidewalk between two adjacent apartment buildings. There were many witnesses who testified that they heard and saw all or part of the incident from inside their apartment.

With a thorough laser scan, you could easily capture the view from each window in the adjoining apartment building. Armed with this data, if Witness A later says he saw the incident from his window and Witness B says she saw something from her window, you could easily use the 3D ‘point cloud” (dense scan data) to go behind the windows referenced by the witnesses and check the exact line of site.

This view would essentially allow investigators to stand in individual apartments and view the crime scene in 3D, enabling them to confirm or refute the testimony of a witness as to what they said they saw.

This extremely detailed data would also enable them to determine if something like a lamp or curtains was inside the apartment and obstructing the witness’ view.

This type of scan actually exonerated an accused person in a California case in which a man was accused of shooting his wife from his house, across the road from a hill where she was walking.

Several witnesses reported this. Turns out, the police scans showed that the line of site from the man’s window to the path the victim was walking on was blocked by low trees and high bushes. No one inside the house could have seen the victim from this viewpoint.

This knowledge ultimately led police to continue their investigation and eventually catch the guilty party.

High definition scanning can also be used to compute the exact location of a shooter. If a bullet enters a house from the outside and goes into the wall across the room – and that room is then scanned – the exact path of the bullet can be shown with a great degree of accuracy.

If multiple shots penetrated the house, the evidence is even more compelling. Because of the multiple trajectory lines that are formed by multiple bullets, the area of shots will be very precise. This data can help determine if the shots came from a house across the street or from a parked car in front of the house, for example.

The tunnel that Princess Diana’s car crashed in is still probably the most thoroughly scanned crime scene in the world. The scan data, combined with the physical data, was able to help determine the precise path of the car.

Similarly, there have been several scans conducted of the “Grassy Knoll,” where a second shooter of President Kennedy was allegedly positioned. In this case, however, there was no conclusive evidence.

I don’t know how the Trayvon Martin-Zimmerman case will ultimately be resolved. I’m not even sure if the authorities with the data understand completely how it can be used. But I do know that courts across America have allowed laser scan data to be introduced as evidence in all types of trials, both criminal and civil.

What used to be viewed as an unproven technology has now become much more common and mainstream.

Then there is also the other side – the defense team. If they know how to more effectively leverage the collected data, they may be the ones to show that what a witness said he saw was not possible from the data collected by the prosecution.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. For more information, visit www.3dforensicscans.com or contact him at tjones@lasurveying.com.

Scan to BIM: The evolution of scanning technology

The truth is, scanning is the only cost-effective way to collect the existing world.

You simply can’t go into a cathedral, petroleum refinery, or metropolitan multi-use entertainment facility and measure with rulers and expect to get the accuracy you need to confidently design renovations.

Laser scanning is the only way to do it.

Up until recently, BIM users would take a set of “asbuilt drawings” put them into a 3D modeling program and create a computer model to work from. Now, after several years of doing that, the harsh realization has surfaced that there are many discrepancies between the “record drawings” and the actual environment to be constructed.

If it’s sheet rock and wood, it can be adjusted to fit. But if it’s glass, steel, concrete or mechanical equipment, a seemingly small error can grow very costly as it is much harder to warp and bend. (Putting expensive new equipment into an area that is too small is a nightmare for the installer, designer, engineer and the insurance company.)

These new 3D laser scanning technologies have dramatically changed the surveying industry – and they have changed it fast. But to really understand the evolution, let’s take a step back….

2004: 360-Degree Scans

The first 360-degree scanners came onto the scene around 2004. Before that, if you wanted to scan something above your head, you had to tilt the scanner back and scan at a steep angle, as most only had a 120-degree scan ability on the vertical axis. Several companies came out with full straight scanners about this time that made it much easier.

2006: Time-of-Flight Scans

The next evolution was time-of flight scanners. In 2006, a time-of-flight scanner took about 45 minutes to one hour for a complete 360-degree scan. If you could do 8-10 scans a day, you were doing very well. Today, the same can be done in about 12-15 minutes, depending on the density you want a scan.

At our firm, our first scanning projects were roads. In a very complicated area, we would scan 1”X 1”. The time-of-fight scanners back then could collect 4,000 points per second. Now they can easily collect 50,000 points per second!

2008: Phased-Based Scans

Today’s phase-based scanners collect 2,000,000 points per second and can create a ¼-inch x ¼-inch pattern at a distance of about 100 feet. This is incredible and as fast and dense as the average user needs. The hardware will eventually get better, faster and cheaper, but phase-based scanning is effective, stable, and provides the ability to scan almost anything in a reasonable about of time.

Present: Scan to BIM

Today, the big research money is going towards Scan to BIM technology, which converts billions of points in the point cloud into useful data.

Several companies have begun addressing this including small independent companies like Pointools, which came up with a way for scanners to recognize flat surfaces. (As small as this may seem, it is a huge advancement.) The program will also recognize pipes and model them automatically about 50% of the time. (Another major advancement.)

Now many of the pipe programs are getting to the same place and advancing the ball. Currently, we are at what I call the “Model T Ford” in software programs, but every year the programs get better.

The next evolution

Having now scanned may very complex areas in industrial sites, we have had a chance to compare them to the asbuilt drawings. In the horizontal view, they are generally close geometrically to the actual. But in their vertical axis, the pipes and duct work in the asbuilt drawings are rarely correct.

There are many reasons for this, but most often it is because the process is so difficult that when an installer sees an easier path, he generally takes it.

“Record drawings,” or asbuilt surveys, are rarely done after the work is complete. Typically, the conversation goes something like this: “Here are the design drawings. Redline any changes that you made.”

There is not a lot of motivation to do a totally new survey. But if a design team takes these documents and models them into their computer programs, they are unknowingly creating multiple problems for the contractor on the new job.

We recently took a set of asbuilt documents for a complex project, modeled them and then compared them to the point cloud to do a clash detection to determine potential interferences. The outcome was eye opening.

Few of the pipes, ducts, waterlines or fire lines in the ceiling were in the place shown on the record drawings. If these documents had been used, the MEP contractors would have spent ten times our fee “field fitting” the new utilities inside the old.

With the utility and cost of laser scanning, it would be smart to use one on every renovation project. If for nothing else, insurance! Just one field fit can sometimes cost far more than the scan itself.

If you scan the environment and put the proposed design into the point cloud, you can tell in just a few minutes where the major interferences will be. We have found conflicts that would have taken upwards of $100,000 to fix if they had to be field-changed during construction. Some were fatal flaws in the required design clearance that could not have been achieved and a totally new design would have had to been submitted.

Scanning to BIM is a big and extremely important step in surveying. Right now, it is the design software that is trying to catch up with the scanning potential. Already this year, several new programs have come out that are much better at accepting point clouds and computer models, but they still have a long way to go.

Not having a design based on a laser scan of the actual environment is a risk that few designers should take. I know I wouldn’t want to tell an owner that there is a construction problem that could have been avoided with a relatively inexpensive laser scan.

Laser scanning has evolved from a “luxury” to a best practice and it’s not a step that any prudent designer should skip.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

3D scan helps Feds catch vandals of ancient American Indian temple

The Nez Perce Indians of Idaho lived in the Pacific Northwest for many centuries before they bumped into Lewis and Clark in 1805. A peaceful tribe who lived mostly on the natural foods available in Idaho’s rivers, they probably never imagined they would one day use high definition scanning technology.

Fast-forward to February 2010.

In a small, little known rock shelter at a national park in Idaho, vandals used spray paint to deface ancient Nez Perce tribal pictographs, estimated to be some 2,500 years old. In addition to having both cultural and spiritual significance to the Nez Perce tribe, the rock shelter is located in a national park on federal land, which makes it a very serious crime.

LandAir Surveying worked with the Archaeological Damage Investigation and Assessment (ADIA), the U.S. Army Corp of Engineers, and the FBI to assist in a federal investigation to prosecute the vandals and document the destruction.

This wasn’t your everyday survey.

Our crews packed up their gear and boarded a plane to Idaho. Then they rented a car and drove to an access point on the Snake River in Hells River Canyon, where a jet boat was waiting to take them to the crime scene. The ride down river was exciting and rigorous, and the drop-off point was a small piece of land in the middle of the wilderness.

The colors and materials used to create the ancient drawings made it very difficult to capture all of the detail in the pictographs. After multiple scans – using a combination of laser scanners and GPS – over two trips, our crew was able to collect enough data to create detailed images of the rock face, as well as the defaced pictographs themselves.

Once processed, the data was presented to the Nez Perce elders, many of whom were very angry as they were seeing the vandalism for the first time. When we returned, we created color drawings, digital files and spherical photography that was used to evaluate and document the damage.

But ultimately, just two years later, justice was theirs.

Two Idaho men were eventually arrested and prosecuted for willful injury or depredation of U.S. property and were sentenced this February to federal prison and fines of more than $33,000 each for defacing the pictographs. A third man is set for sentencing in June.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, division of the LandAir Surveying company.