Young innovators push 3D design and high speed data capture to new heights

When we were asked to bring our booth and support the 2nd Annual Revit Technology Conference in Stone Mountain, Georgia, last week, I didn’t know what to expect. But I’m glad we went because we saw the future – and it’s very bright.

For BIM managers and designers, this conference was a look through the hourglass of the future at the world of design and one thing is for certain: gone are the days when firms could avoid BIM, 3D Cad modeling and laser scanning and still hope to be competitive. What I saw were bright young innovators already pushing the technology of 3D design and high speed data capture to the limits.

It was very refreshing to attend a conference where presenters and attendees agreed that 3D laser scanning was the best tool to use in many design situations and were openly discussing how they currently used the technology in innovative ways.

The largest 3D scanning show I attend every year is SPAR. I had the same feeling at the Revit Technology Conference last week that I had at the third SPAR show back in 2005 when laser scanning was still a new and relatively untested technology. The quality of what was being presented at the Revit conference – and how and who was presenting – was way up on the charts.

Around the showroom floor, there were the larger suppliers of the Revit technology, who were very knowledgeable about new improvements to the products, alongside many boutique firms that were selling all types of software to make the design process in Revit easier and more organized.

There were also other groups selling “cloud” technology that provided a new, more efficient vision of the cloud. While most of us already have data on our iPhones, it will be a short time before we will all have our data in the cloud and projects will be able to be worked on by anyone, anywhere with just a password and a computer.

On large mega-projects like new airports and major industrial facilities, multiple design teams in multiple cities will be able to work on the same cloud-based data at the same time. It will change the way we do things forever. Yes, there will still be security issues and priority issues, but ultimately that’s where we are headed.

Why have one computer process for one million seconds to solve a data set if you can have a million computers process for one second? It’s not quite that simple, but that’s the goal.

The speakers were great, too.

My favorite was Dick Morley. His opening presentation was in the form of a fireside chat with Brad Holtz serving as the interpreter. (I say interpreter because when the audience looked confused and a topic seemed to go over our heads, Brad would bring Dick back down to earth.)

Dick Morley invented the programmable logic controller, which pretty much controls all the electronic machinery in the world. To put it in prospective, that one device produces more revenue than all of Hollywood’s productions combined.

He also invented antilock braking technology, which revolutionized cars and greatly reduced accidents on the highway. (As a side note, he said that while the number of accidents decreased for many years, they slowly started going back up as drivers in America learned to drive closer using the antilock brakes. As the margin of error decreased, accidents increased.)

Dick also invented the cash register overlay that has pictures of food on it rather than numbers. This greatly reduced errors and increased production in the fast food industry.

Dick, who was trained in physics at MIT, had a clear message: “Look at where things are going and what needs to be solved and find the technology to solve it. Holding on to the way it has always been is just a reason to justify where you are – not a plan to move forward.”

I think this is true across the industry. The true leaders and innovators are not the ones who are really good at getting a piece of paper from the left side of their desks to the right, he said. The innovators ask, why paper?

Other interesting speakers shared new and innovative ways the power of 3D is being used across the spectrum. Kelly Cone with the Beck Group gave a very thorough presentation of using modeling in a major construction project and how the model was embraced and used by many of the subcontractors on the project.

They even built a “construction” roll-able computer workstation so the subs could walk over in real time, look at their section of the project in 3D, and understand the intent of the designer.

He also talked about how having access to quick laser scanning information helps designers and contractors come up with workarounds in tight spots.

The conference had attendees from most of the continents in the world and it was evident that critical mass has been reached and that the tipping point into 3D design technology is complete.

The transition away from 2D drawings and flat surveys is history and 3D models and clash detection and design testing prior to construction is now the new standard.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com,  tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.

3D Laser Scanning: The New Industry Standard

When we first started laser scanning back in 2005, we replaced some of our total station surveying equipment with scanning technology. As much as anything, this was a great way for us to learn how to use the technology and understand its capabilities and limitations.

Early on, much of the work we did involved transportation projects and large complicated intersection surveys. There were many immediate benefits. For one, our surveyors were no longer put out into traffic and in harm’s way.

Another benefit was that we didn’t have to drive across town or across the state just to check on a few ambiguous points in a survey. Instead, we could just go back and look at the point cloud.

Today, in 2012, the entire world of architectural and engineering design and construction has changed. While before we had to convince clients of the benefits of using laser surveys, we now have a growing client base that simply will not consider starting a project without one.

In addition to providing accurate spatial information to civil engineers, plant designers, architects, contractors – and even insurance companies and crime scene investigators – laser scanning saves both time and money.

The truth is that in very complicated environments – like a mechanical heating and air conditioning plant room or a baggage room in an airport – the cost of scanning is nominal when compared to the total cost of the project.

Here are four primary reasons 3D laser surveys, or high-definition scanning, is quickly becoming the new industry standard when it comes to making precise measurements in complicated environments:

Reason #1: Scanner Speed

The speed of scanning has changed dramatically compared to what it was just seven years ago.

The first scanner we purchased (and still use today) took one hour for a 360-degree spherical orbit. Today, with our current scanners, it takes just six minutes.  This speed enables us to take many more scan set-ups than we used to take.

With our phase-based high speed scanner, we can now get 40 to 60 scans per day, which is very adequate to cover a large two-story mechanical room. To get the same amount of scans seven years ago would have taken a week.

In areas like these, it is the detail we look for, not the range. In extremely complicated areas, we make a set of scans on all sides. This data is invaluable to designers because it allows them to avoid interferences that often occur in these types of areas.

Reason #2: Software Improvements

Improved software programming has also contributed to the widespread acceptance of scanning technology.

I remember talking to clients back in 2005 and our message was something like this, “We will scan for you, then give you a 2D deliverable set of drawings that you can use to design your project.” When they would ask if they could use the point cloud in their design, our answer was always the same: “Yes, but you will have to buy $10,000 worth of software.”

As you can probably imagine, this was not an easy sell.

Fortunately, today Bentley, AutoCAD and Revit all have point cloud engines in them. The difference between an engine and a viewer is that we can now load a point cloud into an “engine” for a client and they can use the data in the design without having to purchase expensive “point cloud” software.

In fact, one of the takeaways from a scanning conference I recently attended was that all of the major software providers are moving to full 3D software design systems. They finally understand what we have known for years. Why would you survey in 3D, flatten the data to 2D, design in 2D then build in 3D? It just doesn’t make sense.

Reason #3: Clash Detection

This alone is worth the cost of a 3D laser survey.

Consider that if a project is modeled in the design phase, the completed final design – including the MEP systems, air handling systems, structural system and all of the architectural design – can be placed within the point cloud and clash detected. Anything that interferes with another system can be seen immediately and corrected before construction.

This is huge! What prudent engineer, designer or contractor would not want this advantage?  How important would this be to an owner?

Reason #4: TrueView or 360-Degree Spherical Photography

This technology has also improved quite a bit in the last seven years. When we first started scanning, we were fascinated with the fact that scanners could take photographs of the surrounding area, and then take that photographic data and overlay it with the scan data to make general measurements to the environment.

Unfortunately, back then the on-board camera was not as good as we had hoped and sometimes the pictures would come out octagonal and disjointed. As the process became more refined, we were able to mount a high resolution camera on the scanner and produce a crystal clear, color spherical photograph of the site.

This is a big step because it allows you to view a site from any scan set up. You can add text and information to the photographs and then e-mail a specific view to a client across the country or across the world. (In this case, some of our clients pay for our scanning fees with their savings in plane tickets!) This tool also enables clients to look out from the center of every scan and saves lots of time and discussion as to what is or is not located in the area of interest.

High definition scanning has quickly evolved from an emerging technology to an industry best practice when it comes to complicated projects. The construction process always includes many unknowns and the chance of design and construction errors is always high.

Why put yourself in the position of having to explain how a construction project was slowed down or over-budget because a laser scan was not the foundation of the project?

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com,  tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.

3D Laser Scanning and the Trayvon Martin-George Zimmerman Case

We have all heard and seen the news reports of the terrible tragedy that occurred in the altercation and subsequent killing of Trayvon Martin by George Zimmerman.

The case will be prosecuted on the facts of whether Zimmerman was acting in self-defense or whether he was stalking Martin and therefore the aggressor and his fate will likely be decided by a jury.

Watching the extensive coverage of this case, I noticed a laser scanner on the scene in some of the many news reports. I don’t know exactly how the data collected will be used, but I do know many ways that it could be used.

Police departments all across America are purchasing high definition laser scanners to use in their crime scenes investigations. Prior to laser scanning, a series of photographs would have been taken and lots of notes and measurements recorded as a way to document what happened.

Until recently, that was the best way to thoroughly document a crime scene.

But as soon as a scene is released, it is contaminated, making it unlikely that more useable evidence will be found. 3D laser scanning has changed all of that.

First used on crime scenes by the FBI, Secret Service and Scotland Yard, laser scanning is now becoming a “best practice” for the documentation of a homicide. There are many reasons for this, but here are just a few:

  1. The 3D element: Scanning a scene in 3D enables all of the evidence in the scene – from the buildings, sidewalks, parked cars, and surrounding areas – to be preserved in three dimensions. This means that you can look at the scene from every possible view, not just the view of the photographer and camera angle.
  1. Data capture: As cases progress, there will be evidence that comes up later that was not looked for originally. If you have done a thorough job of scanning, objects like drink cups, candy wrappers, or even potential weapons that were unknown at the time can be seen in the scan. This has proven to be an excellent tool for the prosecution in criminal trials. Many cases have been helped by data captured in a scan that was totally unknown at the time of the initial investigation.

So how can this technology be used in the Trayvon Martin/George Zimmerman case?

If you remember the scene where the killing occurred, it was on a sidewalk between two adjacent apartment buildings. There were many witnesses who testified that they heard and saw all or part of the incident from inside their apartment.

With a thorough laser scan, you could easily capture the view from each window in the adjoining apartment building. Armed with this data, if Witness A later says he saw the incident from his window and Witness B says she saw something from her window, you could easily use the 3D ‘point cloud” (dense scan data) to go behind the windows referenced by the witnesses and check the exact line of site.

This view would essentially allow investigators to stand in individual apartments and view the crime scene in 3D, enabling them to confirm or refute the testimony of a witness as to what they said they saw.

This extremely detailed data would also enable them to determine if something like a lamp or curtains was inside the apartment and obstructing the witness’ view.

This type of scan actually exonerated an accused person in a California case in which a man was accused of shooting his wife from his house, across the road from a hill where she was walking.

Several witnesses reported this. Turns out, the police scans showed that the line of site from the man’s window to the path the victim was walking on was blocked by low trees and high bushes. No one inside the house could have seen the victim from this viewpoint.

This knowledge ultimately led police to continue their investigation and eventually catch the guilty party.

High definition scanning can also be used to compute the exact location of a shooter. If a bullet enters a house from the outside and goes into the wall across the room – and that room is then scanned – the exact path of the bullet can be shown with a great degree of accuracy.

If multiple shots penetrated the house, the evidence is even more compelling. Because of the multiple trajectory lines that are formed by multiple bullets, the area of shots will be very precise. This data can help determine if the shots came from a house across the street or from a parked car in front of the house, for example.

The tunnel that Princess Diana’s car crashed in is still probably the most thoroughly scanned crime scene in the world. The scan data, combined with the physical data, was able to help determine the precise path of the car.

Similarly, there have been several scans conducted of the “Grassy Knoll,” where a second shooter of President Kennedy was allegedly positioned. In this case, however, there was no conclusive evidence.

I don’t know how the Trayvon Martin-Zimmerman case will ultimately be resolved. I’m not even sure if the authorities with the data understand completely how it can be used. But I do know that courts across America have allowed laser scan data to be introduced as evidence in all types of trials, both criminal and civil.

What used to be viewed as an unproven technology has now become much more common and mainstream.

Then there is also the other side – the defense team. If they know how to more effectively leverage the collected data, they may be the ones to show that what a witness said he saw was not possible from the data collected by the prosecution.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. For more information, visit www.3dforensicscans.com or contact him at tjones@lasurveying.com.

Scan to BIM: The evolution of scanning technology

The truth is, scanning is the only cost-effective way to collect the existing world.

You simply can’t go into a cathedral, petroleum refinery, or metropolitan multi-use entertainment facility and measure with rulers and expect to get the accuracy you need to confidently design renovations.

Laser scanning is the only way to do it.

Up until recently, BIM users would take a set of “asbuilt drawings” put them into a 3D modeling program and create a computer model to work from. Now, after several years of doing that, the harsh realization has surfaced that there are many discrepancies between the “record drawings” and the actual environment to be constructed.

If it’s sheet rock and wood, it can be adjusted to fit. But if it’s glass, steel, concrete or mechanical equipment, a seemingly small error can grow very costly as it is much harder to warp and bend. (Putting expensive new equipment into an area that is too small is a nightmare for the installer, designer, engineer and the insurance company.)

These new 3D laser scanning technologies have dramatically changed the surveying industry – and they have changed it fast. But to really understand the evolution, let’s take a step back….

2004: 360-Degree Scans

The first 360-degree scanners came onto the scene around 2004. Before that, if you wanted to scan something above your head, you had to tilt the scanner back and scan at a steep angle, as most only had a 120-degree scan ability on the vertical axis. Several companies came out with full straight scanners about this time that made it much easier.

2006: Time-of-Flight Scans

The next evolution was time-of flight scanners. In 2006, a time-of-flight scanner took about 45 minutes to one hour for a complete 360-degree scan. If you could do 8-10 scans a day, you were doing very well. Today, the same can be done in about 12-15 minutes, depending on the density you want a scan.

At our firm, our first scanning projects were roads. In a very complicated area, we would scan 1”X 1”. The time-of-fight scanners back then could collect 4,000 points per second. Now they can easily collect 50,000 points per second!

2008: Phased-Based Scans

Today’s phase-based scanners collect 2,000,000 points per second and can create a ¼-inch x ¼-inch pattern at a distance of about 100 feet. This is incredible and as fast and dense as the average user needs. The hardware will eventually get better, faster and cheaper, but phase-based scanning is effective, stable, and provides the ability to scan almost anything in a reasonable about of time.

Present: Scan to BIM

Today, the big research money is going towards Scan to BIM technology, which converts billions of points in the point cloud into useful data.

Several companies have begun addressing this including small independent companies like Pointools, which came up with a way for scanners to recognize flat surfaces. (As small as this may seem, it is a huge advancement.) The program will also recognize pipes and model them automatically about 50% of the time. (Another major advancement.)

Now many of the pipe programs are getting to the same place and advancing the ball. Currently, we are at what I call the “Model T Ford” in software programs, but every year the programs get better.

The next evolution

Having now scanned may very complex areas in industrial sites, we have had a chance to compare them to the asbuilt drawings. In the horizontal view, they are generally close geometrically to the actual. But in their vertical axis, the pipes and duct work in the asbuilt drawings are rarely correct.

There are many reasons for this, but most often it is because the process is so difficult that when an installer sees an easier path, he generally takes it.

“Record drawings,” or asbuilt surveys, are rarely done after the work is complete. Typically, the conversation goes something like this: “Here are the design drawings. Redline any changes that you made.”

There is not a lot of motivation to do a totally new survey. But if a design team takes these documents and models them into their computer programs, they are unknowingly creating multiple problems for the contractor on the new job.

We recently took a set of asbuilt documents for a complex project, modeled them and then compared them to the point cloud to do a clash detection to determine potential interferences. The outcome was eye opening.

Few of the pipes, ducts, waterlines or fire lines in the ceiling were in the place shown on the record drawings. If these documents had been used, the MEP contractors would have spent ten times our fee “field fitting” the new utilities inside the old.

With the utility and cost of laser scanning, it would be smart to use one on every renovation project. If for nothing else, insurance! Just one field fit can sometimes cost far more than the scan itself.

If you scan the environment and put the proposed design into the point cloud, you can tell in just a few minutes where the major interferences will be. We have found conflicts that would have taken upwards of $100,000 to fix if they had to be field-changed during construction. Some were fatal flaws in the required design clearance that could not have been achieved and a totally new design would have had to been submitted.

Scanning to BIM is a big and extremely important step in surveying. Right now, it is the design software that is trying to catch up with the scanning potential. Already this year, several new programs have come out that are much better at accepting point clouds and computer models, but they still have a long way to go.

Not having a design based on a laser scan of the actual environment is a risk that few designers should take. I know I wouldn’t want to tell an owner that there is a construction problem that could have been avoided with a relatively inexpensive laser scan.

Laser scanning has evolved from a “luxury” to a best practice and it’s not a step that any prudent designer should skip.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com or visit www.landairsurveying.com.

3D scan helps Feds catch vandals of ancient American Indian temple

The Nez Perce Indians of Idaho lived in the Pacific Northwest for many centuries before they bumped into Lewis and Clark in 1805. A peaceful tribe who lived mostly on the natural foods available in Idaho’s rivers, they probably never imagined they would one day use high definition scanning technology.

Fast-forward to February 2010.

In a small, little known rock shelter at a national park in Idaho, vandals used spray paint to deface ancient Nez Perce tribal pictographs, estimated to be some 2,500 years old. In addition to having both cultural and spiritual significance to the Nez Perce tribe, the rock shelter is located in a national park on federal land, which makes it a very serious crime.

LandAir Surveying worked with the Archaeological Damage Investigation and Assessment (ADIA), the U.S. Army Corp of Engineers, and the FBI to assist in a federal investigation to prosecute the vandals and document the destruction.

This wasn’t your everyday survey.

Our crews packed up their gear and boarded a plane to Idaho. Then they rented a car and drove to an access point on the Snake River in Hells River Canyon, where a jet boat was waiting to take them to the crime scene. The ride down river was exciting and rigorous, and the drop-off point was a small piece of land in the middle of the wilderness.

The colors and materials used to create the ancient drawings made it very difficult to capture all of the detail in the pictographs. After multiple scans – using a combination of laser scanners and GPS – over two trips, our crew was able to collect enough data to create detailed images of the rock face, as well as the defaced pictographs themselves.

Once processed, the data was presented to the Nez Perce elders, many of whom were very angry as they were seeing the vandalism for the first time. When we returned, we created color drawings, digital files and spherical photography that was used to evaluate and document the damage.

But ultimately, just two years later, justice was theirs.

Two Idaho men were eventually arrested and prosecuted for willful injury or depredation of U.S. property and were sentenced this February to federal prison and fines of more than $33,000 each for defacing the pictographs. A third man is set for sentencing in June.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, division of the LandAir Surveying company.

What’s all the fuss about high definition scanning?

When it comes to making precise measurements in complicated environments, high definition scanning – or 3D laser surveying, as it is sometimes called – is quickly making its way to the front of the line in a wide range of industries from engineering to historic preservation.

Engineers use laser scans to work with real-world conditions in complex industrial as-built and plant environments. Construction companies use them to gather precise data on site terrain and renovations, and architects use them to check proposed design models against existing conditions to fine-tune their designs.

Even insurance companies and law enforcement have gotten on board, utilizing the technology to recreate large-scale accident scenes.

Why is it better? For one, laser scans are incredibly precise. Images are created from a “point cloud” of millions of points that can be measured precisely including the distances and elevations between points. They are also versatile. The scans, when used with digital color photos, can produce survey-quality files, videos or even 3D animated computer models and are so intuitive that even a novice can understand the information.

Laser scans are also fast. In 2006, when we bought our first scanner, it took almost an hour to produce a full dome 360 degree scan. Now we can scan in 6-8 minutes. This allows us to take many more scans and capture more detail than we did before.

Scanning almost always pays for itself. It is cheaper in the long run because you can revisit the original scan multiple times from your computer desktop without having to revisit the project site. Also, because the technology is so precise, the need for construction reworks and expensive retrofitting is minimized or removed alltogether.

For firms thinking about getting involved with this technology, there are currently three ways to capture 3D data on large scale projects: Airborne LiDAR (Light Detection And Ranging), Mobile LiDAR, and Terrestrial Scanners, which all produce LiDAR data.

Typical projects for terrestrial scanners are large pipes and tunnels, manufacturing facilities, plant process facilities, airport conveyor systems, bridges, buildings, towers and construction projects. (Our firm focuses on terrestrial jobs, as most cannot be readily scanned from airplanes or cars.)

The cost of entry into this kind of scanning is generally between $150,000 to $250,000 for the first units and software. (Although less expensive scanners are now available, software packages can still be expensive and the cost of training should also be considered.)

Aerial platforms and Mobile Platforms start at $500,000 and go up to $5,000,000. These units are constantly being upgraded with newer and better digital sensors and data management enhancements. We currently work with service contractors on these types of jobs, which are typically focused on documenting civil infrastructure on a much larger scale than terrestrial scans.

Projects could include scanning 100 miles of road to prepare a pavement analysis, mapping 1,000 miles of rail line, or mapping the City of Atlanta and producing 3D models of all the buildings.

If the cost of these units seems intimidating, keep in mind that firms that have already invested in these technologies are often open to partnering opportunities with smaller firms.

Small scanning focuses on objects the size of a Volkswagen all the way down to the mechanical components inside of a watch. The applications in this field – commonly referred to as “reverse engineering” – include quality control of manufactured parts or data capture for a manufactured process. A typical project could be scanning an ornate stair rail so that an exact replica can be created from wood, metal or composite.

This scanning method is so precise that you could dissemble a toaster, rifle or carburetor, scan the parts, manufacture duplicates, and they would all work when re-assembled.

What can be scanned?

If it can be built, it can be scanned. There is virtually nothing built that cannot be duplicated and modeled with current scanning techniques.

In addition to the engineering, construction and manufacturing industries, this technology is also being used by insurance companies and law enforcement to reconstruct accident scenes – like when a highway bridge falls during rush-hour traffic or a multi-car pile-up – and even on Hollywood sets. There are companies that make their living scanning elaborate movie sets before and after they are constructed.

To give you an idea of the wide-ranging capabilities of this technology, in the last month, we have scanned a 120-foot pipe in Chicago, a 737 aircraft in Delaware, a luggage system in LaGuardia, and the interior of a peppermill in Virginia. This technology is everywhere!

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.

An eight-lane bridge falls into the Mississippi River during rush hour traffic? Yeah – we do that.

A few years ago, an entire span of a busy eight-lane interstate bridge broke apart and fell into the Mississippi River in Minneapolis during rush hour traffic. Cars, concrete, twisted metal and people went crashing into the water.

When the dust settled, 13 were dead and more than 145 injured.

The bridge was Minnesota’s fifth busiest, carrying 140,000 vehicles each day. Eventually, the NTSB cited a design flaw – plus additional weight on the bridge at the time of the collapse – as the likely cause. It was one of the country’s worst infrastructure accidents in history.

When most people think of “forensics,” images of CSI and police dusting for fingerprints immediately come to mind. But do you also think of accident reconstruction and lasers?

In 2007, at the time of the bridge collapse, our firm was one of the first to use 3D laser scanning technology. When we heard about the bridge, we made some calls to the local authorities and offered our scanning services. The response was very positive. (Because of the magnitude of the disaster, the FBI ended-up scanning the site.)

The advantage and need for laser scanning in a case like this is to preserve the scene exactly as it is. On that evening in Minneapolis, the scene was changing, literally, as the rescue was taking place.

Cars were being checked and retrieved, pieces of the bridge were being moved, and all of this was taking place in a river. The precision of high-definition laser scanning and the ability to stay out of the way of first responders and rescue teams was very important.

Once scanned, the data files and photos of the scene could be sent directly to forensic engineers, the Department of Transportation, structural experts, bridge experts and many other engineers and contractors to begin collaborating on the information and building 3D computer models and animation.

Reconstruction is a critical because understanding how the bridge landed could be an excellent predictor of how it originally fell, which could lead to the point of the initial failure and ultimate collapse.

Unfortunately, these types of structural accidents happen all of the time. Recently, there have been several events here in Atlanta where this 3D scanning technology was used or could have been used.

Remember the bus accident on I-75 at Northside Drive, also in 2007? Six were killed when the bus carrying the Bluffton University baseball team tumbled over the highway overpass and hit the ground 30 feet below. The scene was scanned to run a simulation of what might have happened. Investigators later determined that the driver mistook the exit ramp for a lane and went into the curve at full speed.

Or what about the collapse of the elevated pedestrian bridge at the Atlanta Botanical Gardens in 2008 that killed one and injured 18? This is another example of a site similar to the Minneapolis bridge collapse, but on a much smaller scale.

Another example was when a 170-foot section of the railing and fencing along Atlanta’s 17th Street Bridge came loose and crashed to the interstate below in 2011.

All of these are good examples of where 3D laser scanning technology was (or could have been) an excellent choice.

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com.

A 3D laser survey can save thousands – just ask America’s busiest airport.

When the time came to remove and renovate the existing underground baggage conveyor system in America’s busiest airport, the action never stopped.

The contractor hired for the renovation had a seemingly impossible task: build a new conveyor system while the old one was still in operation. No matter what, the luggage movers had to keep going.

Together, the contractor and a team of laser surveyors spent seven days scanning the site with high-speed scanners. They worked at night, when airport traffic was lightest, and when the final registered point cloud was compared to the proposed 3D model of the new conveyor system, critical clashes were detected.

By uncovering the interferences early, the contractor saved thousands in construction and re-manufacturing dollars.

Click here for the full case study.

High-definition scanning is changing the construction, architecture and engineering industries. The beauty of laser scanning is its ability to gather detailed data that the client doesn’t even know they need at the time, but will prove useful down the road.

In addition to being incredibly precise, scans can be used to produce point clouds, digital color photos, survey-quality files, computer models and videos from the scans of multiples views. You can insert animation or virtual buildings, roads and people to show proposed areas; or insert design drawings from BIM to check for clash or interference.

And once the site is scanned and processed, anyone – from analysts to engineers – can access it anytime. All you need to check and recheck engineering quality data is a desktop computer.

The cost savings of avoiding reconstruction and re-engineering far outweigh the cost of the scan itself. And, as with most things, isn’t it cheaper to get it right the first time?

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.

 

Surviving 2012: Six things every business can learn from the surveying industry

As a professional land surveyor for 40 years, I have a first-hand understanding of the housing downturn and subsequent economic recession we have been experiencing for the past six years.

At our firm, we began seeing the impact in early 2008, just one year after the peak in our business in 2007. Surveying is often viewed (at least by banks) as part of the construction industry and when construction loans dried-up, so did our business.

For surveyors, the hit was especially hard because our industry doesn’t just rely on the housing market, but also on commercial and retail expansion, which depends on the public sector to build infrastructure like new roads, sewer outfalls, parks, schools, airport expansions and industrial parks.

When things got bad, many surveyors began discounting their services in an attempt to hold onto their clients and market share. Over the past three years, for example, I have seen the fee and value of ALTA surveys – surveys required by banks before they will refinance a loan – sell for half of what they did before the fall.

The irony is that as the economy slowed, interest rates began to fall and investors, shopping centers and businesses began to refinance their properties. The need for ALTA surveys actually grew as a result! It was only a matter of months before attorneys representing banks began calling our firms asking for “ALTA updates,” implying something other than a new survey.

The firms of the future will be smaller with fewer permanent staff. Fees will change. It will no longer be just about how many crews you have, but how smart you are at collecting and selling 3D data. And those firms that can find ways to use existing sources of 3D data will be even better equipped to weather the storm.

For survey firms – as is true for all industries in this economy – the way to survive is to simply be a better businessperson. Here are six important things every business can learn from the surveying industry:

#1: Control your price. There are only two ways to control your prices: have a healthy backlog of profitable work and provide valuable services to your clients.

#2: Utilize subcontractors. Have a permanent staff large enough to process the workflow and provide quality control, but maintain relationships with good subcontractors and associate firms to expand your workforce when you have a wave a work that your permanent staff can’t handle.

#3: Make profit your goal – not billing. Just because you bill a crew out at $1,000 doesn’t mean you make $1,000. Your actual profits are typically closer to $150.

#4: Don’t buy – rent, swap and borrow. If you can rent a piece of equipment for $500 and make $150, you have greatly reduced your cash flow and improved your profit margin. Take a look at all of the expensive equipment you have purchased and must pay for every day. Unused equipment sitting on the shelf is not a good investment. Swap with other firms when you can, rent when you have to, and buy when the workload demands it.

#5: Always have a contract. Make the signing of a contract the starting point for every job. Even with an established client, having a signed contract can save a lot of scope creep and misunderstanding even on the simplest jobs.

#6: Don’t cut your price without changing the scope. Many lawyers have called to tell me that my price is too high. I remind them that it’s less than their price and they don’t even have to leave the office!

Lastly and most importantly, be realistic. If your workload goes down, you must cut your overhead immediately. For most of us, this means staff, which is always the hardest thing to do.

At one point, we had to reduce our employees from a high of 45 to just seven. We have since slowly built back up, but it was this reduction in staff, combined with tight cash management and a realistic outlook, that enabled us to survive.

The key to surviving this economy – for land surveying firms, as well as all business – is to be realistic, creative and adaptable. This is what it will take to survive and grow into better times.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@3DLaserSurveys.com.

3D Laser Surveying – How it Works – Better. Faster. Cheaper.

3D laser surveying, or high-definition scanning, is quickly becoming the new industry standard when it comes to making precise measurements in complex environments.

Construction companies use laser scans to gather precise data on site terrain, renovations and additions. Architects use them to check proposed design models against existing conditions to fine-tune their designs, and engineers use 3D scans to work with real-world conditions in complex industrial as-built and plant environments.

The scans are quick, accurate and highly detailed and the result is big savings of both time and money by eliminating costly return visits to the project site and reducing the need for expensive reworks.

So, what exactly is this technology and how does it work?

How 3D Laser Scanning works. 3D laser scanning uses high speed lasers that fire at incredibly high rates of speed. The image is created from a “point cloud,” which contains millions of points that can be measured precisely including the distances and elevations between points.

AutoCAD drawings and 3D computer models are produced from the scanned data, enabling engineers, architects and designers access to 360° interactive high resolution images from any desktop computer.

Better. 3D laser scans are incredibly precise. The scans can be used to produce point clouds, digital color photos, survey-quality files, or computer models of objects, roads, bridges and buildings. You can also produce videos from the scans of multiples views; insert animation or virtual buildings, roads and people to show proposed areas; or insert design drawings from BIM to check for clash or interference.

Faster. 3D laser scans are fast. Depending on the scanner needed, it typically takes between five minutes to 30 minutes for a high resolution scan.

Cheaper. The cost of a high-resolution scan ultimately depends on the size and overall complexity of the project. On very simple projects, a traditional survey is typically less expensive. But for complex projects – such as a major intersection crossing in a high commercial area – a 3D scan is cheaper in the long run.

Because you can revisit the original scan multiple times from your computer desktop, costly return visits to the project site are eliminated. The precision of the scan also eliminates the need for construction reworks and expensive retrofitting. Sometimes the cost savings resulting from a 3D scan exceeds the cost of the scan itself by 300%.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.